Nicolas Rinaudo • @NicolasRinaudo@functional.cafe
Nicolas Rinaudo • @NicolasRinaudo@functional.cafe
face north
face north
face west
face west
face south
face south
face east
face east
start
start
stop
stop
triple_backflip
triple_backflip
triple_backflip
face -35
face -35
face -35
Direction
object Direction:
object Direction: val North: Int = ??? val East: Int = ??? val South: Int = ??? val West: Int = ???
object Direction: val North: Int = ??? val East: Int = ??? val South: Int = ??? val West: Int = ???
object Direction: val North: Int = 1 val East: Int = 2 val South: Int = 3 val West: Int = 4
def label(d: Int) = ???
def label(d: Int) = ???
def label(d: Int) = ???
def label(d: Int) = d match case Direction.North ⇒ ??? case Direction.East ⇒ ??? case Direction.South ⇒ ??? case Direction.West ⇒ ???
def label(d: Int) = d match case Direction.North ⇒ ??? case Direction.East ⇒ ??? case Direction.South ⇒ ??? case Direction.West ⇒ ???
def label(d: Int) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south" case Direction.West ⇒ "east"
label(-35)
label(-35)// 💥 scala.MatchError: -35
type Direction = Intobject Direction: val North: Int = 1 val East: Int = 2 val South: Int = 3 val West: Int = 4
type Direction = Intobject Direction: val North: Int = 1 val East: Int = 2 val South: Int = 3 val West: Int = 4
type Direction = Intobject Direction: val North: Direction = 1 val East: Direction = 2 val South: Direction = 3 val West: Direction = 4
def label(d: Int) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south" case Direction.West ⇒ "west"
def label(d: Direction) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south" case Direction.West ⇒ "west"
label(-35)
label(-35)// 💥 scala.MatchError: -35
Enumeration
type Direction = Intobject Direction: val North: Direction = 1 val East: Direction = 2 val South: Direction = 3 val West: Direction = 4
Enumeration
object Direction:
Enumeration
object Direction extends Enumeration:
Enumeration
object Direction extends Enumeration: val North, East, South, West = Value
Enumeration
def label(d: Direction) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south" case Direction.West ⇒ "west"
Enumeration
def label(d: Direction.Value) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south" case Direction.West ⇒ "west"
Enumeration
label(-35)
Enumeration
label(-35)// ⛔ Found: Int// Required: Direction.Value
Enumeration
def label(d: Direction.Value) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south" case Direction.West ⇒ "west"
Enumeration
def label(d: Direction.Value) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south"//case Direction.West ⇒ "west"
Enumeration
label(Direction.West)
Enumeration
label(Direction.West)// 💥 scala.MatchError: West
trait Direction
trait Directionobject Direction:
trait Directionobject Direction: case object North extends Direction
trait Directionobject Direction: case object North extends Direction case object East extends Direction
trait Directionobject Direction: case object North extends Direction case object East extends Direction case object South extends Direction
trait Directionobject Direction: case object North extends Direction case object East extends Direction case object South extends Direction case object West extends Direction
def label(d: Direction.Value) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south"//case Direction.West ⇒ "west"
def label(d: Direction) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south"//case Direction.West ⇒ "west"
label(Direction.West)
label(Direction.West)// 💥 scala.MatchError: West
sealed trait Directionobject Direction: case object North extends Direction case object East extends Direction case object South extends Direction case object West extends Direction
def label(d: Direction) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south"//case Direction.West ⇒ "west"
def label(d: Direction) = d match case Direction.North ⇒ "north" case Direction.East ⇒ "east" case Direction.South ⇒ "south"//case Direction.West ⇒ "west"// ⛔ match may not be exhaustive.// It would fail on pattern case: West
Enumerations:
make nonsensical values impossible to represent.
guarantee that our code handles all necessary cases.
Enumerations:
make nonsensical values impossible to represent.
guarantee that our code handles all necessary cases.
provided you're not using scala.Enumeration
though...
Command
case class Command()
val cmd = Command()
case class Command( order: String)
val cmd = Command( "face")
case class Command( order: String, dir : Option[Direction])
val cmd = Command( "face", Some(Direction.North))
Command( "triple backflip", Some(Direction.South))
Command( "triple backflip", Some(Direction.South))
Command( "triple backflip", Some(Direction.South))
Order
as enumerationsealed trait Order
Order
as enumerationsealed trait Orderobject Order:
Order
as enumerationsealed trait Orderobject Order: case object Face extends Order
Order
as enumerationsealed trait Orderobject Order: case object Face extends Order case object Start extends Order
Order
as enumerationsealed trait Orderobject Order: case object Face extends Order case object Start extends Order case object Stop extends Order
Order
as enumerationcase class Command( order: String, dir : Option[Direction])
val cmd = Command( "face", Some(Direction.North))
Order
as enumerationcase class Command( order: Order, dir : Option[Direction])
val cmd = Command( Order.Face, Some(Direction.North))
Order
as enumerationCommand( "triple backflip", Some(Direction.South))
Order
as enumerationCommand( "triple backflip", Some(Direction.South))// ⛔ Found: String// Required: Order
Order
as enumerationCommand( "triple backflip", Some(Direction.South))
Order
as enumerationCommand( Order.Start, Some(Direction.South))
Order
as enumerationCommand( Order.Start, Some(Direction.South))
Order
as enumerationCommand( Order.Start, Some(Direction.South))
Order
as "enumeration"sealed trait Orderobject Order: case object Face extends Order case object Start extends Order case object Stop extends Order
Order
as "enumeration"sealed trait Orderobject Order: case class Face(dir: Direction) extends Order case object Start extends Order case object Stop extends Order
Order
as "enumeration"sealed trait Orderobject Order: case class Face(dir: Direction) extends Order case object Start extends Order case object Stop extends Order
Command
as "enumeration"sealed trait Commandobject Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command
Command
as "enumeration"Command( Order.Start, Some(Direction.South))
Command
as "enumeration"Command( Order.Start, Some(Direction.South))// ⛔ object Command does not take parameters
Command
as "enumeration"Command.Start
Command
as "enumeration"Command.Start
Enumerations are everywhere.
Enumerations are not enough.
Something "like an enumeration" might be, however.
start
face eaststartstop
face eaststartstop
face eaststartstop
face eaststartstop
face eaststartstop
sealed trait Commandobject Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( ) extends Command
sealed trait Commandobject Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( cmd1: Command ) extends Command
sealed trait Commandobject Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( cmd1: Command, cmd2: Command ) extends Command
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
Command.Chain( Command.Chain( Command.Chain( Command.Face(Direction.East), Command.Chain( Command.Start, Command.Stop ) ), Command.Face(Direction.West) ), Command.Chain( Command.Start, Command.Stop ))
extension (cmd1: Command) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
val startStop: Command = Command.Start ~> Command.Stop
extension (cmd1: Command) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
val startStop: Command = Command.Start ~> Command.Stop
extension (cmd1: Command) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
val startStop: Command = Command.Start ~> Command.Stop
extension (cmd1: Command) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
val startStop: Command = Command.Start ~> Command.Stop
extension (cmd1: Command) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
val startStop: Command = Command.Start ~> Command.Stop
val start = Command.Start
val start = Command.Startval stop = Command.Stop
val start = Command.Startval stop = Command.Stopdef face(dir: Direction) = Command.Face(dir)
val north = Direction.North
val north = Direction.Northval east = Direction.East
val north = Direction.Northval east = Direction.Eastval south = Direction.South
val north = Direction.Northval east = Direction.Eastval south = Direction.Southval west = Direction.West
def move(d: Direction) = face(d) ~> start ~> stop
def move(d: Direction) = face(d) ~> start ~> stop
def move(d: Direction) = face(d) ~> start ~> stop
def move(d: Direction) = face(d) ~> start ~> stop
def move(d: Direction) = face(d) ~> start ~> stop
move(east) ~> move(west)
move(east) ~> move(west)
move(east) ~> move(west)
move(east) ~> move(west)
move(east) ~> move(west)
move(east) ~> move(west)
move(east) ~> move(west)
move(east) ~> move(west)
We've completed our data structure by using:
records (Chain
, Face
).
enumerated types (Command
, Direction
).
We've completed our data structure by using:
records (Chain
, Face
).
enumerated types (Command
, Direction
).
recursive types (Command
is expressed in terms of itself).
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Chain
A sum type is a discriminated union of values, and can be thought of as an
OR
on types.
Command = Face | Start | Stop | Chain
A sum type is a discriminated union of values, and can be thought of as an
OR
on types.
Command = Face | Start | Stop | Chain
A sum type is a discriminated union of values, and can be thought of as an
OR
on types.
union int_or_string { int as_int; char* as_string;};
union int_or_string { int as_int; char* as_string;};
union int_or_string { int as_int; char* as_string;};
union int_or_string { int as_int; char* as_string;};
#include<stdio.h>void print_union(union int_or_string e) { ???}
#include<stdio.h>void print_union(union int_or_string e) { ???}
enum typetag { int_tag, string_tag};
enum typetag { int_tag, string_tag};
enum typetag { int_tag, string_tag};
enum typetag { int_tag, string_tag};
union int_or_string { int as_int; char* as_string;};
union int_or_string { enum typetag discriminator; int as_int; char* as_string;};
union int_or_string { enum typetag discriminator; int as_int; char* as_string;};
struct int_or_string { enum typetag discriminator; int as_int; char* as_string;};
struct int_or_string { enum typetag discriminator; int as_int; char* as_string;};
struct int_or_string { enum typetag discriminator; union { int as_int; char* as_string; } value;};
struct int_or_string { enum typetag discriminator; union { int as_int; char* as_string; } value;};
struct int_or_string { enum typetag discriminator; union { int as_int; char* as_string; } value;};
#include<stdio.h>void print_union(union int_or_string e) { ???}
#include<stdio.h>void print_union(struct int_or_string e) { ???}
#include<stdio.h>void print_union(struct int_or_string e) { ???}
#include<stdio.h>void print_union(struct int_or_string e) { if(e.discriminator == int_tag) { printf("int: %i", e.value.as_int); } else { printf("string: %s", e.value.as_string); }}
#include<stdio.h>void print_union(struct int_or_string e) { if(e.discriminator == int_tag) { printf("int: %i", e.value.as_int); } else { printf("string: %s", e.value.as_string); }}
#include<stdio.h>void print_union(struct int_or_string e) { if(e.discriminator == int_tag) { printf("int: %i", e.value.as_int); } else { printf("string: %s", e.value.as_string); }}
#include<stdio.h>void print_union(struct int_or_string e) { if(e.discriminator == int_tag) { printf("int: %i", e.value.as_int); } else { printf("string: %s", e.value.as_string); }}
Command = Face | Start | Stop | Chain
A sum type is a discriminated union of values, and can be thought of as an
OR
on types.
An ADT is a sum type [...]
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Chain
Command = Face | Start | Stop | Command & Command
Command = Face | Start | Stop | Command & Command
Command = Face | Start | Stop | Command & Command
Command = Face | Start | Stop | Command & Command
A product type is an aggregation of values, and can be thought of as an
AND
on types.
Command = Face | Start | Stop | Command & Command
A product type is an aggregation of values, and can be thought of as an
AND
on types.
An ADT is a sum type of product types [...]
Command = Face | Start | Stop | Command & Command
Command = Face | Start | Stop | Command & Command
Command = Face | Start | Stop | Command & Command
An ADT is a potentially recursive sum type of product types.
sealed trait Commandobject Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( cmd1: Command, cmd2: Command ) extends Command
sealed trait Commandobject Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( cmd1: Command, cmd2: Command ) extends Command
enum Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( cmd1: Command, cmd2: Command ) extends Command
enum Command: case class Face(dir: Direction) extends Command case object Start extends Command case object Stop extends Command case class Chain( cmd1: Command, cmd2: Command ) extends Command
enum Command: case Face(dir: Direction) extends Command case Start extends Command case Stop extends Command case Chain( cmd1: Command, cmd2: Command ) extends Command
enum Command: case Face(dir: Direction) case Start case Stop case Chain( cmd1: Command, cmd2: Command )
start ~> start
start ~> start
start ~> start
start ~> start
stop ~> stop
stop ~> stop
stop ~> stop
stop ~> stop
start ~> face(north)
start ~> face(north)
start ~> face(north)
start ~> face(north)
final abstract class Idlefinal abstract class Moving
final abstract class Idlefinal abstract class Moving
final abstract class Idlefinal abstract class Moving
enum Command[Before, After]: case Face(dir: Direction) case Start case Stop case Chain( cmd1: Command, cmd2: Command )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start case Stop case Chain( cmd1: Command, cmd2: Command )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop case Chain( cmd1: Command, cmd2: Command )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain( cmd1: Command, cmd2: Command )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain( cmd1: Command, cmd2: Command )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain( cmd1: Command[A, B], cmd2: Command )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain( cmd1: Command[A, B], cmd2: Command[B, C] )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain( cmd1: Command[A, B], cmd2: Command[B, C] )
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain[A, B, C]( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
extension (cmd1: Command[A, B]) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
extension [A, B](cmd1: Command[A, B]) def ~>(cmd2: Command): Command = Command.Chain(cmd1, cmd2)
extension [A, B](cmd1: Command[A, B]) def ~>(cmd2: Command[B, C]): Command = Command.Chain(cmd1, cmd2)
extension [A, B](cmd1: Command[A, B]) def ~>[C](cmd2: Command[B, C]): Command = Command.Chain(cmd1, cmd2)
extension [A, B](cmd1: Command[A, B]) def ~>[C](cmd2: Command[B, C]): Command[A, C] = Command.Chain(cmd1, cmd2)
start ~> start
start ~> start// ⛔ Found: Command[Idle, Moving]// Required: Command[Moving, C]
stop ~> stop
stop ~> stop// ⛔ Found: Command[Moving, Idle]// Required: Command[Idle, C]
start ~> face(north)
start ~> face(north)// ⛔ Found: Command[Idle, Idle]// Required: Command[Moving, C]
face(east) ~> start ~> stop
face(east) ~> start ~> stop
face(east) ~> start ~> stop
face(east) ~> start ~> stop
face(east) ~> start ~> stop
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain"
movingLabel(Command.Start)
movingLabel(Command.Start)// ⛔ Found: Command[Idle, Moving]// Required: Command[Moving, ?]
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop"//case _: Command.Chain[_, _, _] => "chain"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop"//case _: Command.Chain[_, _, _] => "chain"// ⛔ match may not be exhaustive.// It would fail on pattern case: Command.Chain(_, _)
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop"//case _: Command.Chain[_, _, _] => "chain"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain" case Command.Start => "start"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop" case _: Command.Chain[_, _, _] => "chain" case Command.Start => "start"// ⛔ Found: Command[Idle, Moving]// Required: Command[Moving, ?]
We used type constraints on our sum type's members to:
We used type constraints on our sum type's members to:
make illegal state transitions impossible to represent.
guarantee that our code handles all necessary cases.
We used type constraints on our sum type's members to:
make illegal state transitions impossible to represent.
guarantee that our code handles all necessary cases.
guarantee that our code handles only necessary cases.
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain[A, B, C]( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain[A, B, C]( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain[A, B, C]( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
A GADT is a sum type [...]
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain[A, B, C]( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
enum Command[Before, After]: case Face(dir: Direction) extends Command[Idle, Idle] case Start extends Command[Idle, Moving] case Stop extends Command[Moving, Idle] case Chain[A, B, C]( cmd1: Command[A, B], cmd2: Command[B, C] ) extends Command[A, C]
A witness type describes properties of a sum type's variants at the type level.
A GADT is a sum type with one or more witness types [...]
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop"//case _: Command.Chain[_, _, _] => "chain" case Command.Start => "start"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop"//case _: Command.Chain[_, _, _] => "chain" case Command.Start => "start"
def movingLabel(cmd: Command[Moving, _]) = cmd match case Command.Stop => "stop"//case _: Command.Chain[_, _, _] => "chain" case Command.Start => "start"
Type equality is information available to the compiler about each witness type, allowing it to refine pattern matches.
A GADT is a sum type with one or more witness types, each equipped with a type equality.
A GADT is a sum type with one or more witness types, each equipped with a type equality.
A GADTs is a sum type with interesting properties for pattern matching.
The cardinality of type
A
is written ∣A∣ and is the number of values of typeA
.
∣Nothing∣=0
∣Unit∣=1
∣Boolean∣=2
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends +[A, Nothing] case Right[B](value: B) extends +[Nothing, B]
enum +[+A, +B]: case Left[A](value: A) extends (A + Nothing) case Right[B](value: B) extends (Nothing + B)
∣A+B∣=∣A∣…
∣A+B∣=∣A∣+∣B∣
We'll say that types
A
andB
are isomorphic if they have the same cardinality, and writeA ~= B
.
We'll say that types
A
andB
are isomorphic if they have the same cardinality, and writeA ~= B
.
Algebra
1 + 1 = 2
Algebra
1 + 1 = 2
Types
Unit + Unit ~= Boolean
Algebra
1 + 1 = 2
Types
Unit + Unit ~= Boolean
Algebra
1 + 1 = 2
Types
Unit + Unit ~= Boolean
Algebra
1 + 1 = 2
Types
Unit + Unit ~= Boolean
Algebra
1 + 1 = 2
Types
Unit + Unit ~= Boolean
Algebra
a + (b + c) = (a + b) + c
Algebra
a + (b + c) = (a + b) + c
Types
A + (B + C) ~= (A + B) + C
Algebra
a + b = b + a
Algebra
a + b = b + a
Types
A + B ~= B + A
Algebra
a + 0 = a
Algebra
a + 0 = a
Types
A + Nothing ~= A
case class ✕[A, B](first: A, second: B)
case class ✕[A, B](first: A, second: B)
case class ✕[A, B](first: A, second: B)
case class ✕[A, B](first: A, second: B)
extension [A](a: A) def ✕[B](b: B): ✕[A, B] = new ✕(a, b)
extension [A](a: A) def ✕[B](b: B): ✕[A, B] = new ✕(a, b)
extension [A](a: A) def ✕[B](b: B): ✕[A, B] = new ✕(a, b)
extension [A](a: A) def ✕[B](b: B): ✕[A, B] = new ✕(a, b)
extension [A](a: A) def ✕[B](b: B): ✕[A, B] = new ✕(a, b)
extension [A](a: A) def ✕[B](b: B): ✕[A, B] = new ✕(a, b)
extension [A](a: A) def ✕[B](b: B): A ✕ B = new ✕(a, b)
∣A×B∣=∣A∣…
∣A×B∣=∣A∣×∣B∣
Algebra
a + a = 2 * a
Algebra
a + a = 2 * a
Types
A + A ~= Boolean ✕ A
Algebra
a + a = 2 * a
Types
A + A ~= Boolean ✕ A
Algebra
(a * b) * c = a * (b * c)
Algebra
(a * b) * c = a * (b * c)
Types
(A ✕ B) ✕ C ~= A ✕ (B ✕ C)
Algebra
a * b = b * a
Algebra
a * b = b * a
Types
A ✕ B ~= B ✕ A
Algebra
a * 1 = a
Algebra
a * 1 = a
Types
A ✕ Unit ~= A
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
enum List[+A]: case Nil case Cons(head: A, tail: List[A])
∣List0[A]∣
∣List0[A]∣=∣Nil∣
∣List0[A]∣=1
∣List1[A]∣
∣List1[A]∣=∣A×List0[A]∣
∣List1[A]∣=∣A∣×∣List0[A]∣
∣List1[A]∣=∣A∣×1
∣List1[A]∣=∣A∣
∣List2[A]∣
∣List2[A]∣=∣A×List1[A]∣
∣List2[A]∣=∣A∣×∣List1[A]∣
∣List2[A]∣=∣A∣×∣A∣
∣List2[A]∣=∣A∣2
∣Listn[A]∣=∣A∣n
∣Listn[A]∣
∣Listn[A]∣=∣i=0∑nListi[A]∣i
∣Listn[A]∣=i=0∑n∣Listi[A]∣
∣Listn[A]∣=i=0∑n∣A∣i
∣Listn[A]∣=∣A∣−1∣A∣n+1−1
∣List2[Boolean]∣=∣Boolean∣−1∣Boolean∣2+1−1
∣List2[Boolean]∣=2−122+1−1
∣List2[Boolean]∣=7
ADTs have a deep connection to the algebra you know.
you can use this connection to prove fun facts about types.
ADTs have a deep connection to the algebra you know.
you can use this connection to prove fun facts about types.
you can also use it to pad talks and look clever.
ADTs make data structures simpler and safer.
So do GADTs, only more so.
ADTs make data structures simpler and safer.
So do GADTs, only more so.
Thinking about data structures that way will have a lasting impact on the way you write code.
Nicolas Rinaudo • @NicolasRinaudo@functional.cafe
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |